Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing–Jin–Ji (China) and its nearby surrounding region – Part 1: Aerosol distributions and meteorological features

نویسندگان

  • H. Wang
  • M. Xue
  • X. Y. Zhang
  • H. L. Liu
  • C. H. Zhou
  • S. C. Tan
  • H. Z. Che
  • B. Chen
  • T. Li
چکیده

The urbanized region ofJing(Beijing)Jin(Tianjin)-Ji (alias of Hebei province) and its nearby surrounding region (3JNS) is becoming China’s most polluted area by haze, exceeding even the Yangtze and Pearl river deltas. Aside from pollutant emission, the meteorology of the planetary boundary layer (PBL) is the most important factor affecting haze pollution. Focusing on July 2008, the aerosol optical properties and PBL meteorology features closely related to haze formation were simulated in the 3JNS region using an online atmospheric chemical transport model. The relationship between regional PBL meteorology, PM2.5, and haze is discussed. Model results accurately simulated the aerosol optical depth (AOD), single scattering albedo (SSA) and asymmetry parameter (ASY), validated by comparison with observations from the MODerate Resolution Imaging Spectroradiometer (MODIS), the China Aerosol Remote Sensing NETwork (CARSNET) and the Aerosol Robotic NETwork (AERONET). Modeled PBL wind speeds showed reasonable agreement with those from the National Centers for Environmental Prediction (NCEP) Reanalysis 2. A monthly mean AOD value as high as 1.2 was found from both model and observations, with a daily mean larger than 2.0 during haze episodes in the 3JNS region. Modeled and observed SSA values of 0.90–0.96 and ASY values of 0.72–0.74 demonstrated the high scattering characteristic of summer aerosols in this region. PBL wind speeds from modeled and NCEP data both showed a reversing trend of PM2.5 variation, illustrating the importance of the “PBL window shadow” in haze formation. Turbulence diffusion and PBL height had opposite phases to surface PM2.5, indicating that lower PBL height and weaker PBL turbulence diffusion are essential to haze formation. It is noted that homogeneous air pressure does not occur at the surface, but at an 850–950 hPa height during the haze episode. The momentum transmitting downward of the cold air from above the PBL to the low PBL and surface lead to an increase in surface wind speeds and haze dispersal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its near surrounding region – Part 2: Aerosols’ radiative feedback effects

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. Abstract Two model experiments, namely a control (CTL) experiment without aerosol-radiation feedbacks and a RAD experiment with online aerosol-radiation interactions, were designed to study the radiative feedback on regional r...

متن کامل

Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015

We investigate the rapid formation and evolutionary mechanisms of an extremely severe and persistent haze episode that occurred in northern China during winter 2015 using comprehensive ground and vertical measurements, along with receptor and dispersion model analysis. Our results indicate that the life cycle of a severe winter haze episode typically consists of four stages: (1) rapid formation...

متن کامل

Analysis of gross alpha, gross beta activities and beryllium- 7 concentrations in surface air: their variation and statistical prediction model

Background: Measurement of gross , gross activities, and cosmogenic beryllium-7 (7Be) concentrations were made both daily and weekly during the years 2001- 2004 from samples of atmospheric aerosols filtered from the air at Tehran Nuclear Research Center (35 41' N) and Zahedan (28 29' N). Materials and Methods: Weekly aerosol samples were collected with the high-volume air samplers on cellul...

متن کامل

Mesoscale modeling of Central American smoke transport to the United States: 2. Smoke radiative impact on regional surface energy budget and boundary layer evolution

[1] During 20 April to 21 May 2003, large amounts of smoke aerosols from Central American Biomass Burning (CABB) fires were transported to southeastern United States. Using a coupled aerosol, radiation, and meteorology model built upon the heritage of the Regional Atmospheric Modeling System (RAMS) with new capabilities called the Assimilation and Radiation Online Modeling of Aerosols (AROMA), ...

متن کامل

Detecting the causality influence of individual meteorological factors on local PM2.5 concentration in the Jing-Jin-Ji region

Due to complicated interactions in the atmospheric environment, quantifying the influence of individual meteorological factors on local PM2.5 concentration remains challenging. The Beijing-Tianjin-Hebei (short for Jing-Jin-Ji) region is infamous for its serious air pollution. To improve regional air quality, characteristics and meteorological driving forces for PM2.5 concentration should be bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015